Python Arrays
🐍 Python Arrays — Full Tutorial
In Python, arrays can be implemented in two ways:
-
Using lists (most common, flexible)
-
Using the
arraymodule (more like traditional arrays, type-specific)
🔹 1. Using Python Lists as Arrays
Python lists can store multiple elements of different data types:
-
Lists are dynamic — you can add or remove elements.
-
Lists support slicing, indexing, loops.
List Operations
🔹 2. Using the array Module
If you want a true array with same data type elements, use the array module.
-
'i'→ type code for signed integer -
'f'→ type code for float -
Common type codes:
| Type | Code |
|---|---|
| int | 'i' |
| float | 'f' |
| double | 'd' |
| char | 'u' |
Array Operations
🔹 3. Accessing Array Elements
-
Works for lists and array.array.
🔹 4. Looping Through Arrays
🔹 5. Multidimensional Arrays
Using Nested Lists
Using numpy (Recommended for large arrays)
🔹 6. Array Operations with NumPy
🔹 7. Summary
| Feature | List | array module |
NumPy Array |
|---|---|---|---|
| Type-specific | ❌ No | ✅ Yes | ✅ Yes |
| Dynamic Size | ✅ Yes | ✅ Yes | ✅ Yes |
| Supports Loops | ✅ Yes | ✅ Yes | ✅ Yes |
| Mathematical Operations | ❌ No | Limited | ✅ Yes |
🧠 Practice Exercises
-
Create a list of 10 numbers and find their sum.
-
Create an array of integers using the
arraymodule and remove an element. -
Create a 3×3 matrix using nested lists and print the diagonal elements.
-
Using NumPy, create an array of 5 numbers and multiply each by 10.
-
Loop through a list and print only even numbers.
