NumPy Data Types

🔠 NumPy — Data Types (dtype)

NumPy uses its own optimized data types rather than Python’s built-in types.
These data types allow faster computation and less memory usage, especially when working with large datasets.


📌 Checking the Data Type


 

Output:

int32 (or int64 depending on system)

🧠 Common NumPy Data Types

NumPy Type Meaning
i / int_ Integer
b Boolean
u Unsigned Integer (no negative values)
f Float
c Complex float
S String
U Unicode string
O Python object
M DateTime
m Time delta

🧮 Integer Types


Possible integer sizes:

Type Range
int8 −128 → +127
int16 −32,768 → +32,767
int32 Standard integer
int64 Large integer

🔢 Float Types


Float types:

Type Precision
float16 half precision
float32 single precision
float64 double precision

➕ Complex Numbers



🔣 String and Unicode


For Unicode:



✔ Boolean Type



🎯 Converting (Casting) Data Type (astype())

You can convert (cast) an array to another type using astype().



⚠ Casting Rules

✔ Allowed: float → int, int → float
❌ Not allowed automatically: string → numeric (unless values are valid numbers)

Example:



🧠 Memory Efficiency Example


 


📌 Summary Table

Category Example
Integer types int8, int16, int32, int64
Float types float16, float32, float64
Complex numbers complex64, complex128
Boolean bool_
Strings S (byte string), U (Unicode)
Date/time datetime64, timedelta64

You may also like...