Pareto Distribution
📈 Pareto Distribution in Python
The Pareto Distribution is a heavy-tailed continuous probability distribution often used in economics, finance, and social sciences.
It is famous for modeling wealth distribution, income, or city sizes, where a small number of occurrences account for the majority of the effect (the 80/20 rule).
✅ 1. Characteristics of Pareto Distribution
-
Continuous distribution
-
Parameters:
-
a→ shape parameter (α > 0) -
size→ number of samples
-
-
Probability Density Function (PDF):
f(x;a)=axma/xa+1,x≥xmf(x; a) = a x_m^a / x^{a+1}, \quad x \ge x_m
-
x_m→ minimum possible value (default in NumPy = 1) -
Heavy-tailed (large values are possible)
Applications:
-
Wealth or income distribution
-
File sizes in the internet
-
Population sizes of cities
✅ 2. Generate Pareto Data Using NumPy
Output (example):
-
Values ≥ 0
-
Can shift using
x_m + dataif minimum value other than 1 is required
✅ 3. Visualize Pareto Distribution
-
Histogram is right-skewed
-
Few very large values → heavy tail
✅ 4. Shifted Pareto Distribution
-
Shift ensures minimum value ≥ xm
✅ 5. Compare Different Shape Parameters
-
Smaller
a→ heavier tail (more extreme values) -
Larger
a→ distribution more concentrated near 0
🧠Summary Table
| Function | Parameters | Description |
|---|---|---|
np.random.pareto() |
a, size | Generates Pareto random numbers |
a |
Shape parameter | Controls tail heaviness |
size |
Number of samples | Output array size |
xm |
Minimum value | Can shift data by adding xm |
🎯 Practice Exercises
-
Generate 1000 Pareto random numbers with
a=2and plot histogram with KDE. -
Compare Pareto distributions for
a=2vsa=5. -
Shift Pareto data to have minimum value 10 and visualize.
