Pandas Fixing Wrong Data
Pandas – Fixing Wrong Data
Wrong data refers to values that are incorrect, unrealistic, or invalid, even though they may be in the correct format. Examples include negative ages, impossible dates, incorrect categories, or out-of-range values. Pandas provides several ways to detect and fix such data.
1. Identify Wrong Data
Check Summary Statistics
Inspect Unique Values
2. Fixing Values Using Conditions
Example: Fix Negative or Zero Age
3. Replace Wrong Values
4. Removing Wrong Rows
5. Fixing Out-of-Range Data
6. Fixing Inconsistent Categories
7. Fixing Date Errors
Remove future dates:
8. Filling Corrected Missing Values
9. Real-World Example
10. Best Practices
✔ Define valid data ranges
✔ Use conditional checks
✔ Replace or remove invalid values
✔ Recheck data after fixing
Conclusion
Fixing wrong data ensures your dataset reflects realistic and meaningful values. Pandas makes it easy to detect, correct, or remove invalid data for reliable analysis.
