Pandas DataFrames
Pandas DataFrames
A Pandas DataFrame is a two-dimensional, labeled data structure used to store data in rows and columns, similar to a table in a database or an Excel spreadsheet. It is the most important and widely used object in Pandas.
Creating a DataFrame
1. From a Dictionary
2. From a List of Lists
3. From a CSV File
Viewing Data
Selecting Data
Select Columns
Select Rows
Filter Rows
Adding & Removing Data
Add a New Column
Drop a Column
Updating Data
Handling Missing Values
Sorting Data
Common DataFrame Methods
Real-World Example
Key Differences: Series vs DataFrame
| Series | DataFrame |
|---|---|
| 1-D | 2-D |
| Single column | Multiple columns |
| Index + values | Rows + columns |
Conclusion
Pandas DataFrames are the backbone of data analysis in Python. Once you master DataFrames, tasks like data cleaning, transformation, and analysis become much easier.
